Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33952696

RESUMO

Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.


Assuntos
GABAérgicos/farmacologia , Doença de Huntington/genética , Neurônios/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Animais , Benzamidas , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Expressão Gênica , Proteína Huntingtina , Doença de Huntington/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Transmissão Sináptica/genética , Transcriptoma
2.
Stress ; 24(4): 421-429, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33541187

RESUMO

Psychosocial stress effects of urban living are associated with substantially increased risk for schizophrenia, mood and anxiety disorders, by altering stress-induced activity in the amygdala and pregenual anterior cingulate cortex (ACC). Genetic factors are likely to modulate the impact of city living on stress processing. Growing evidence suggests a key role of FKBP5, a co-chaperone regulating the glucocorticoid receptor sensitivity, in the etiology of stress-related disorders. Here we investigated the interaction of city living and genetic variation in FKBP5 (rs3800373) on neural activity in stress-sensitive brain systems. Functional magnetic resonance imaging was performed in 31 healthy young adults using the Montreal Imaging Stress Task. Subjects were divided into groups depending on the number of inhabitants of their current residency. There was a significant main effect of city living on neural activity in the amygdala-hippocampus complex, replicating prior findings. Moreover, we found an interaction between rs3800373 and city living modulating responses in the bilateral subgenual ACC and right pregenual ACC. Specifically, only city dwellers carrying the FKBP5 minor risk allele showed increased stress responses in the subgenual and pregenual ACC when compared to those living in small towns. A significant gene-environment interaction on neural stress responses in the amygdala or hippocampus was only found in FKBP5 major allele carriers. These results point to a potential role of the FKBP5 rs3800373 minor risk allele in predisposing those who live in bigger cities to changes of functional responsivity in the pre- and subgenual ACC, thereby increasing the risk for developing stress-related mental disorders.


Assuntos
Giro do Cíngulo , Estresse Psicológico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Cidades , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto Jovem
3.
iScience ; 24(1): 101909, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33392479

RESUMO

Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.

4.
J Neurosci ; 39(23): 4448-4460, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936241

RESUMO

Striatal output pathways are known to play a crucial role in the control of movement. One possible component for shaping the synaptic output of striatal neuron is the glutamatergic input that originates from cortex and thalamus. Although reports focusing on quantifying glutamatergic-induced morphological changes in striatum exist, the role of glutamatergic input in regulating striatal function remains poorly understood. Using primary neurons from newborn mice of either sex in a reduced two-neuron microcircuit culture system, we examined whether glutamatergic input modulates the output of striatal neurons. We found that glutamatergic input enhanced striatal inhibition in vitro With a glutamatergic partner from either cortex or thalamus, we attributed this potentiation to an increase in the size of quantal IPSC, suggesting a strengthening of the postsynaptic response to GABAergic signaling. Additionally, a differential effect of cortical and thalamic innervation onto striatal GABAergic neurons output was revealed. We observed that cortical, but not thalamic input, enhanced the number of releasable GABAergic synaptic vesicles and morphological synapses. Importantly, these alterations were reverted by blockade of neuronal activity and glutamate receptors, as well as disruption of BDNF-TrkB signaling. Together, our data indicate, for first time, that GABAergic synapse formation in corticostriatal pairs depends on two parallel, but potentially intersecting, signaling pathways that involve glutamate receptor activation in striatal neurons, as well as BDNF signaling. Understanding how cortical and thalamic inputs refine striatal output will pave the way toward dissecting basal ganglia activity in both physiological and pathological conditions.SIGNIFICANCE STATEMENT Striatal GABAergic microcircuits are critical for motor function. However, the mechanisms controlling striatal output, particularly at the level of synaptic strength, are unclear. Using two-neuron culture system, we quantified the synaptic output of individual striatal GABAergic neurons paired with a glutamatergic partner and studied the influence of the excitatory connections that are known to be interregionally formed in vivo We found that glutamatergic input potentiated striatal inhibitory output, potentially involving an increased feedback and/or feedforward inhibition. Moreover, distinct components of glutamatergic innervation, such as firing activity or release of neurotrophic factors were shown to be required for the glutamatergic-induced phenotype. Investigation, therefore, of two-neuron in vitro microcircuits could be a powerful tool to explore synaptic mechanisms or disease pathophysiology.


Assuntos
Corpo Estriado/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Anticorpos Neutralizantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas Tirosina Quinases/fisiologia , Quinoxalinas/farmacologia , Proteínas Recombinantes/farmacologia , Vesículas Sinápticas/fisiologia , Tetrodotoxina/farmacologia , Tálamo/citologia
5.
J Biol Chem ; 292(4): 1160-1177, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27941024

RESUMO

The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the proper assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic postsynapses requires the scaffold protein gephyrin and the guanine nucleotide exchange factor collybistin (Cb). In vitro, the pleckstrin homology domain of Cb binds phosphoinositides, specifically phosphatidylinositol 3-phosphate (PI3P). However, whether PI3P is required for inhibitory postsynapse formation is currently unknown. Here, we investigated the role of PI3P at developing GABAergic postsynapses by using a membrane-permeant PI3P derivative, time-lapse confocal imaging, electrophysiology, as well as knockdown and overexpression of PI3P-metabolizing enzymes. Our results provide the first in cellula evidence that PI3P located at early/sorting endosomes regulates the postsynaptic clustering of gephyrin and GABAA receptors and the strength of inhibitory, but not excitatory, postsynapses in cultured hippocampal neurons. In human embryonic kidney 293 cells, stimulation of gephyrin cluster formation by PI3P depends on Cb. We therefore conclude that the endosomal pool of PI3P, generated by the class III phosphatidylinositol 3-kinase, is important for the Cb-mediated recruitment of gephyrin and GABAA receptors to developing inhibitory postsynapses and thus the formation of postsynaptic membrane specializations.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Membranas Sinápticas/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Neurônios GABAérgicos/citologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...